2023年普通高等学校招生全国统一考试·调研模拟卷XK-QG(一)文理 数学试卷答案,我们目前收集并整理关于2023年普通高等学校招生全国统一考试·调研模拟卷XK-QG(一)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023年普通高等学校招生全国统一考试·调研模拟卷XK-QG(一)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.某报对“男女同龄退休”这一公众关注的问题进行了民意调查,数据如表
看法 性别 |
赞同 | 反对 | 合计 |
男 | 198 | 217 | 415 |
女 | 476 | 107 | 585 |
合计 | 674 | 326 | 1000 |
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,
P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.760 | 3.841 | 5.024 | 60635 | 7.879 | 10.828 |
分析(1)由于tan$\frac{β}{2}$=$\frac{1}{2}$,可得sinβ=$2sin\frac{β}{2}cos\frac{β}{2}$=$\frac{2sin\frac{β}{2}cos\frac{β}{2}}{si{n}^{2}\frac{β}{2}+co{s}^{2}\frac{β}{2}}$=$\frac{2tan\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$.同理可得cosβ=$\frac{1-ta{n}^{2}\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$.
(2)∵$\overrightarrow{a}•\overrightarrow{b}=\frac{5}{13}$=cosαsinβ+sinαcosβ=$\frac{4}{5}$cosα+$\frac{3}{5}$sinα,又α∈(0,π),sin2α+cos2α=1,解出即可.
解答解:(1)∵tan$\frac{β}{2}$=$\frac{1}{2}$,∴sinβ=$2sin\frac{β}{2}cos\frac{β}{2}$=$\frac{2sin\frac{β}{2}cos\frac{β}{2}}{si{n}^{2}\frac{β}{2}+co{s}^{2}\frac{β}{2}}$=$\frac{2tan\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$=$\frac{2×\frac{1}{2}}{1+(\frac{1}{2})^{2}}$=$\frac{4}{5}$.
同理可得cosβ=$\frac{1-ta{n}^{2}\frac{β}{2}}{1+ta{n}^{2}\frac{β}{2}}$=$\frac{1-(\frac{1}{2})^{2}}{1+(\frac{1}{2})^{2}}$=$\frac{3}{5}$.
(2)∵$\overrightarrow{a}•\overrightarrow{b}=\frac{5}{13}$=cosαsinβ+sinαcosβ=$\frac{4}{5}$cosα+$\frac{3}{5}$sinα,
又α∈(0,π),sin2α+cos2α=1,
化为7sin2α-150sinα+48=0,
解得sinα=$\frac{75-\sqrt{5289}}{7}$.
点评本题考查了三角函数求值、倍角公式、同角三角函数基本关系式、数量积运算性质,考查了推理能力与计算能力,属于中档题.
未经允许不得转载:答案星辰 » 2023年普通高等学校招生全国统一考试·调研模拟卷XK-QG(一)文理 数学