江西2024届高二年级3月联考(23-332B)文理 数学试卷答案,我们目前收集并整理关于江西2024届高二年级3月联考(23-332B)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
江西2024届高二年级3月联考(23-332B)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
18.在数列{an}中,a1=1,a2=3,且an+1=(p+q)an-pqan-1(n≥2,q≠0).
(Ⅰ)若p=2,设bn=an+1-2an(n∈N*),证明:{bn}是等比数列;
(Ⅱ)对任意的n∈N*,设cn=an+1-qan,证明:“数列{cn}为常数列”的充要条件是“p=1”.
分析求出f(x)的导数,令g(x)=x+lnx-1(x>0),求出g(x)的导数,判断单调性,即可得到f′(x)=0的解为x=1;
由f′(x)<0,解不等式可得0<x<1.
解答解:函数$f(x)=\frac{1}{2}{x^2}+xlnx-2x$的导数为f′(x)=x+1+lnx-2
=x+lnx-1,
令g(x)=x+lnx-1(x>0),
g′(x)=1+$\frac{1}{x}$>0,即g(x)在x>0递增,
由g(1)=0,可得f′(x)=0的解为x=1;
由f′(x)<0,解得0<x<1.
故答案为:(0,1).
点评本题考查导数的运用:求单调区间,注意运用构造函数的方法判断单调性,考查运算能力,属于中档题.
未经允许不得转载:答案星辰 » 江西2024届高二年级3月联考(23-332B)文理 数学