重庆市2022~2023学年重庆一中高三上期学情调研文理数学试卷答案,我们目前收集并整理关于重庆市2022~2023学年重庆一中高三上期学情调研文理数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
重庆市2022~2023学年重庆一中高三上期学情调研文理数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
14.关于x的方程${({\frac{2}{3}})^x}=\frac{1+a}{1-a}$有负实数根,则a的取值范围是( )
A. | (-1,1) | B. | (0,1) | C. | (-1,0) | D. | $({-\frac{2}{3},\frac{2}{3}})$ |
分析将问题转化为两函数g(x)=|ax-2|,h(x)=$\frac{1}{x}$-lnx的图象在(0,1]无交点,再通过分类讨论和数形结合得出a的范围.
解答解:根据题意,记g(x)=|ax-2|,h(x)=$\frac{1}{x}$-lnx,
则f(x)=g(x)-h(x),根据题意需对a进行讨论,
①当a=2,x∈(0,1]时,g(x)=2-2x,此时,
g(x)<h(x)恒成立,即f(x)<0在(0,1]恒成立,
所以,f(x)在(0,1]内无零点,符合题意,
②当a>2,所以$\frac{2}{a}$∈(0,1),
因此,g(x)=$\left\{\begin{array}{l}{-ax+2,x∈(0,\frac{2}{a}]}\\{ax-2,x∈(\frac{2}{a},1]}\end{array}\right.$,
函数g(x)先减后增,如右图,
当x∈(0,1]时,h(x)=$\frac{1}{x}$-lnx单调递减,所以h(x)min=h(1)=1,
要使f(x)在(0,1]上无零点,则只需h(x)>g(x)恒成立,
再结合函数图象,只需满足条件h(1)>g(1)即可,
所以,1>a-2,解得a<3,
综合①②讨论,实数a的取值范围为[2,3),
故答案为:[2,3).
点评本题主要考查了函数零点的判断,函数的图象与性质,涉及函数的单调性和最值,以及分段函数的求解,属于中档题.
未经允许不得转载:答案星辰 » 重庆市2022~2023学年重庆一中高三上期学情调研文理数学