江西省重点中学协作体2023届高三第二次联考文理 数学试卷答案,我们目前收集并整理关于江西省重点中学协作体2023届高三第二次联考文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
江西省重点中学协作体2023届高三第二次联考文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
4.已知函数f(x)若f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$,g(x)=f(x)-k有3个零点,则实数k的取值范围是( )
A. | (1,+∞) | B. | (0,1)∪(1,+∞) | C. | (0,1) | D. | (0,1] |
分析把已知数列递推式变形,可得数列{$\frac{1}{{a}_{n}}$}构成以$\frac{1}{2}$为首项,以2为公差的等差数列,求出等差数列的通项公式后可得数列{an}的通项公式.
解答解:由$\frac{1}{{a}_{n}}$=$\frac{1}{{a}_{n-1}}$+2(n≥2),得$\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}}=2(n≥2)$,
又a1=2,∴$\frac{1}{{a}_{1}}=\frac{1}{2}$,
则数列{$\frac{1}{{a}_{n}}$}构成以$\frac{1}{2}$为首项,以2为公差的等差数列,
则$\frac{1}{{a}_{n}}=\frac{1}{2}+2(n-1)=\frac{4n-3}{2}$,
∴${a}_{n}=\frac{2}{4n-3}$.
故答案为:$\frac{2}{4n-3}$.
点评本题考查数列递推式,考查了等差关系的确定,训练了等差数列通项公式的求法,是中档题.
未经允许不得转载:答案星辰 » 江西省重点中学协作体2023届高三第二次联考文理 数学