[雅安三诊]2023届雅安市高2020级第三次诊断性考试文理 数学

[雅安三诊]2023届雅安市高2020级第三次诊断性考试文理 数学试卷答案,我们目前收集并整理关于[雅安三诊]2023届雅安市高2020级第三次诊断性考试文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

[雅安三诊]2023届雅安市高2020级第三次诊断性考试文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

13.对于函数y=lg$\frac{x}{100}$的图象给出三个命题:下述命题中正确命题的序号是(1),(2),(3).
(1)存在直线l1,函数y=lg$\frac{x}{100}$的图象与函数y=100•10x的图象关于直线l1对称;
(2)存在直线l2,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1$\frac{x}{100}$的图象关于直线l2对称;
(3)存在直线l3,函数y=lg$\frac{x}{100}$的图象与函数y=log0.1x的图象关于直线l3对称.

分析先证$\frac{n-1}{n}$<$\frac{n}{n+1}$,再分别令n=2,4,6,…,24,将这12个不等式相乘,即可证明原命题.

解答证明:因为$\frac{1}{n}$>$\frac{1}{n+1}$(n≥2)恒成立,
所以,1-$\frac{1}{n}$<1-$\frac{1}{n+1}$,即$\frac{n-1}{n}$<$\frac{n}{n+1}$,
所以,分别令n=2,4,6,…,24得,
$\frac{1}{2}$<$\frac{2}{3}$,$\frac{3}{4}$<$\frac{4}{5}$,$\frac{5}{6}$<$\frac{6}{7}$,…,$\frac{23}{24}$<$\frac{24}{25}$,
将这12个不等式同向相乘得,
$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$<$\frac{2}{3}$•$\frac{4}{5}$•$\frac{6}{7}$…$\frac{24}{25}$,
两边再同时乘以:$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$(即左式)得,
($\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$)2<($\frac{2}{3}$•$\frac{4}{5}$•$\frac{6}{7}$…$\frac{24}{25}$)•($\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$)=$\frac{1}{25}$,
两边开方得,$\frac{1}{2}$•$\frac{3}{4}$•$\frac{5}{6}$…$\frac{23}{24}$<$\frac{1}{5}$,即证.

点评本题主要考查了运用综合法证明不等式,其中$\frac{n-1}{n}$<$\frac{n}{n+1}$是证明的关键,属于中档题.

未经允许不得转载:答案星辰 » [雅安三诊]2023届雅安市高2020级第三次诊断性考试文理 数学

赞 (0)