2023届普通高校招生全国统一考试仿真模拟·全国卷 BBY-E(四)(五)(六)文理 数学试卷答案,我们目前收集并整理关于2023届普通高校招生全国统一考试仿真模拟·全国卷 BBY-E(四)(五)(六)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届普通高校招生全国统一考试仿真模拟·全国卷 BBY-E(四)(五)(六)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
10.已知函数f(x)=x3+x2-x+1,求函数f(x)的单调减区间为(-1,$\frac{1}{3}$).
分析(1)由数列的前n项和求出通项,然后利用定义证明数列{an}是等差数列;
(2)把(1)中的通项公式代入bn=2${\;}^{{a}_{n}}$,可得数列{bn}是等比数列,并求出首项和公比,则其前n项和可求.
解答(1)证明:当n=1时,a1=S1=1;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}={n}^{2}-(n-1)^{2}=2n-1$,
当n=1时上式成立,
∴an=2n-1,
此时an+1-an=2(n+1)-1-2n+1=2.
∴数列{an}是等差数列;
(2)解:an=2n-1,bn=2${\;}^{{a}_{n}}$=22n-1,
∴数列{bn}是以b1=2为首项,公比q=4的等比数列.
∴数列{bn}的前n项和${T}_{n}=\frac{2(1-{4}^{n})}{1-4}=\frac{2}{3}•{4}^{n}-\frac{2}{3}$.
点评本题考查等差数列、等比数列的前n项和,是基础的计算题.
未经允许不得转载:答案星辰 » 2023届普通高校招生全国统一考试仿真模拟·全国卷 BBY-E(四)(五)(六)文理 数学