2023届安徽省安庆市示范高中高三4月联考文理 数学

2023届安徽省安庆市示范高中高三4月联考文理 数学试卷答案,我们目前收集并整理关于2023届安徽省安庆市示范高中高三4月联考文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023届安徽省安庆市示范高中高三4月联考文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

13.已知直线l的方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,曲线C的方程为$\left\{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}\right.$(θ为参数).
(1)把直线l和曲线C的方程分别化为直角坐标方程和普通方程;
(2)求曲线C上的点到直线l距离的最大值.

分析(1)令t=2x(1≤t≤4),则g(t)=$\frac{1}{2}$t2-2t-1=$\frac{1}{2}$(t-2)2-3,讨论对称轴t=2与区间[1,4]的关系,可得最值;
(2)由题意可得m<$\frac{{4}^{x-\frac{1}{2}}-1}{{2}^{x}}$在x∈[0,2]恒成立,令t=2x(1≤t≤4),即有m<$\frac{1}{2}$t-$\frac{1}{t}$的最小值,由单调性,可得最小值,进而得到m的范围.

解答解:(1)f(x)=${4}^{x-\frac{1}{2}}$-2•2x-1(0≤x≤2),
令t=2x(1≤t≤4),则g(t)=$\frac{1}{2}$t2-2t-1=$\frac{1}{2}$(t-2)2-3,
当t=2即x=1时,取得最小值,且为-3;
当t=4即x=2时,取得最大值,且为-1;
(2)f(x)>0对任意x∈[0,2]恒成立,即为
m<$\frac{{4}^{x-\frac{1}{2}}-1}{{2}^{x}}$在x∈[0,2]恒成立,
令t=2x(1≤t≤4),即有m<$\frac{1}{2}$t-$\frac{1}{t}$的最小值,
由$\frac{1}{2}$t-$\frac{1}{t}$在[1,4]递增,可得t=1时,取得最小值-$\frac{1}{2}$,
则m<-$\frac{1}{2}$,即m的取值范围是(-∞,-$\frac{1}{2}$).

点评本题考查函数的最值的求法,注意运用换元法和指数函数的单调性,考查二次函数的最值求法,同时考查不等式恒成立问题的解法.属于中档题.

未经允许不得转载:答案星辰 » 2023届安徽省安庆市示范高中高三4月联考文理 数学

赞 (0)