高考数学一轮复习讲义微专题28三角函数性质(含详解)

高考数学一轮复*讲义微专题28三角函数性质(含详解),以下展示关于高考数学一轮复*讲义微专题28三角函数性质(含详解)的相关内容节选,更多内容请多关注我们

高考数学一轮复*讲义微专题28三角函数性质(含详解)

1、 微专题28 三角函数及函数性质一、基础知识:1、正弦函数的性质(1)定义域: (2)值域: (3)周期: (4)对称轴(最值点): (5)对称中心(零点):,其中是对称中心,故也是奇函数(6)单调增区间: 单调减区间:2、余弦函数的性质(1)定义域: (2)值域: (3)周期: (4)对称轴(最值点):其中是对称轴,故也是偶函数(5)对称中心(零点): (6)单调增区间: 单调减区间:3、正切函数的性质(1)定义域: (2)值域: (3)周期: (4)对称中心: (5)零点:(6)单调增区间: 注:正切函数的对称中心由两部分构成,一部分是零点,一部分是定义域取不到的的值4、的性质:与正弦函数

2、相比,其图像可以看做是由图像变换得到(轴上方图像不变,下方图像沿轴向上翻折),其性质可根据图像得到:(1)定义域: (2)值域: (3)周期: (4)对称轴: (5)零点:(6)单调增区间: 单调减区间:5、的性质:此类函数可视为正弦函数通过坐标变换所得,通常此类函数的性质要通过计算所得。所涉及的性质及计算方法如下:(1)定义域:(2)值域:(3)周期: (4)对称轴(最值点),对称中心(零点),单调区间需通过换元计算所求。通常设,其中,则函数变为,在求以上性质时,先利用正弦函数性质与图像写出所满足的条件,然后将还原为再解出的值(或范围)即可注:1、余弦函数也可看做的形式,即,所以其性质可通过

3、计算得到。2、对于某些解析式的性质(如对称轴,单调区间等)可根据解析式的特点先变形成为,再求其性质二、典型例题:例1:函数 ( )A. 在上单调递减 B. 在上单调递增C. 在上单调递减 D. 在上单调递增思路:单调递增区间:单调递减区间:符合条件的只有D答案:D例2:函数的一个单调递减区间为( )A. B. C. D. 思路:先变形解析式,再求出单调区间:,时,D选项符合要求答案:D例3:的递减区间为( )A. B. C. D. 思路:在解函数性质之前首先把的系数变正:,再求其单调区间:,由于,所以区间等同于答案:D例4:已知函数,则下列关于函数性质判断正确的是( )A. 最小正周期为,一个

4、对称中心是B. 最小正周期为,一个对称中心是C. 最小正周期为,一个对称中心是D. 最小正周期为,一个对称中心是思路: 对称中心:时,一个对称中心是答案:A例5:函数的单调递增区间为( )A. B. C. D. 思路:求单调区间可设,即,只需找到所满足的条件然后解出的范围即可。的取值需要满足两个条件,一是保证,二是取单调增的部分,所以可得:,即,解得: 答案:A例6:设函数,则下列关于函数的说法中正确的是( )A. 是偶函数 B. 的最小正周期是C. 图像关于点对称 D. 在区间上是增函数思路:先判断的周期,可结合图像进行判断,可得:;对于对称轴,对称中心,单调区间,可考虑设,即,借助图像先写出所符合的条件,再求出的值(或范围)即可。对称轴:,不是偶函数对称中心:,关于点对称单调增区间:答案:C例7:函数的图像的两条相邻对称轴间的距离为( )A. B. C. D. 思路:根据图像的特点可得:相邻对称轴之间的距离是周期的一半,所以间距为:答案:B例8:已知函数的图像关于直线对称,则的值为_思路一:可以利用辅角公式变形为的形式,但是由于系数含参,所以辅角只能用一个抽象的代替:因为关于直线对称,思路二:本题还可以利用特殊值法求出的值,再进行验证即可:因为关于直线对称,所以代入一组特殊值:,再代入验证,其

2.阅读材料,完成下列要求。(12分)材料的社会动员在新民主主义革命时期、20世纪50年代至70年代末期、改革开放以来三个时期呈现出不同特征。——摘编自董惠敏《关于社会动员的扩展性评述》从上图中任选两个阶段,根据材料并结合所学知识,简析两个阶段间社会动员的变化,并说明其原因。(要求:明确列出两个时段,观点明确,史实准确,论证充分,表述清晰)

….

未经允许不得转载:答案星辰 » 高考数学一轮复习讲义微专题28三角函数性质(含详解)

赞 (0)