江西省2024届八年级第六次阶段适应性评估【R-PGZX A JX】文理 数学试卷答案,我们目前收集并整理关于江西省2024届八年级第六次阶段适应性评估【R-PGZX A JX】文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
江西省2024届八年级第六次阶段适应性评估【R-PGZX A JX】文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
3.在极坐标系中已知圆C:ρ2-4$\sqrt{2}ρcos(θ-\frac{π}{4})+6=0$与直线 L:3ρcosθ+4ρsinθ+6=0
(1)将直线L和圆C的极坐标方程化为直角坐标方程.
(2)求圆C上的点到直线L的最短距离.
分析(1)设圆C的标准方程为:(x-a)2+(y-b)2=2,由于点C在直线y=x+1上,则b=a+1;圆C经过点P(5,4),可得(5-a)2+(4-b)2=2,联立解出即可得出;
(2)利用直线与圆相切的充要条件即可得出.
解答解:(1)设圆C的标准方程为:(x-a)2+(y-b)2=2,
∵点C在直线y=x+1上,则b=a+1,
∵圆C经过点P(5,4),∴(5-a)2+(4-b)2=2,
解得:a=4,b=5.
∴圆C:(x-4)2+(y-5)2=2.
(2)设直线l斜率为k,则直线l方程为y=k(x-1),即kx-y-k=0.
由题意知,圆心(4,5)到已知直线l的距离等于半径$\sqrt{2}$,
即$\frac{|4k-5-k|}{\sqrt{1+{k}^{2}}}=\sqrt{2}$,解得k=1或k=$\frac{23}{7}$.
所求切线方程是y=x-1,或$\frac{23}{7}$x-$\frac{23}{7}$.
点评本题考查了圆的标准方程及其应用、直线与圆相切的充要条件、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.
未经允许不得转载:答案星辰 » 江西省2024届八年级第六次阶段适应性评估【R-PGZX A JX】文理 数学