安徽省2023年最新中考模拟示范卷(二)文理 数学试卷答案,我们目前收集并整理关于安徽省2023年最新中考模拟示范卷(二)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省2023年最新中考模拟示范卷(二)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
20.若x>1,则函数y=$\frac{{x}^{2}-x+1}{x-1}$的最小值为3.
分析(Ⅰ)由条件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,即可证明.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,利用“错位相减法”与等比数列的前n项和公式即可得出.
解答(Ⅰ)证明:由条件可知,${S_{n+1}}-{S_n}={S_n}+{2^{n+1}}$,即${S_{n+1}}-2{S_n}={2^{n+1}}$,
整理得$\frac{{{S_{n+1}}}}{{{2^{n+1}}}}-\frac{S_n}{2^n}=1$,
∴数列$\{\frac{S_n}{2^n}\}$是以1为首项,1为公差的等差数列.
(Ⅱ)由(1)可知,$\frac{S_n}{2^n}=1+n-1=n$,即${S_n}=n•{2^n}$,
令Tn=S1+S2+…+Sn${T_n}=1•2+2•{2^2}+…+n•{2^n}$①
$2{T_n}=1•{2^2}+…+(n-1)•{2^n}+n•{2^{n+1}}$②
①-②,$-{T_n}=2+{2^2}+…+{2^n}-n•{2^{n+1}}$,
整理得${T_n}=2+(n-1)•{2^{n+1}}$.
点评本题考查了“错位相减法”、等差数列与等比数列的通项公式与前n项和公式,考查了推理能力与计算能力,属于中档题.
未经允许不得转载:答案星辰 » 安徽省2023年最新中考模拟示范卷(二)文理 数学