2023届衡中同卷调研卷广东版四文理 数学试卷答案,我们目前收集并整理关于2023届衡中同卷调研卷广东版四文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
2023届衡中同卷调研卷广东版四文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
20.下列函数中,既是偶函数又在区间(0,+∞)上单调递增的函数为( )
A. | y=x-1 | B. | y=(x+1)2 | C. | f(x)=4x2-mx+5 | D. | y=x2 |
分析(1)由f(1)=2,可得a=1,$f(x)=x+\frac{1}{x}$,f(x)在[1,+∞)上为增函数,运用单调性的定义证明,注意作差、变形和定符号、下结论几个步骤;
(2)可得f(x)在(0,1)递减,求得最小值,比较端点处的函数值,可得最大值.
解答解:(1)∵由f(1)=2,得a=1,
∴$f(x)=x+\frac{1}{x}$,f(x)在[1,+∞)上为增函数,
下用单调性的定义证明:设1≤x1<x2,
由$f({x_1})-f({x_2})={x_1}+\frac{1}{x_1}-{x_2}-\frac{1}{x_2}$=${x_1}-{x_2}+\frac{{{x_2}-{x_1}}}{{{x_1}{x_2}}}$=$({x_1}-{x_2})\frac{{{x_1}{x_2}-1}}{{{x_1}{x_2}}}$,
∵1≤x1<x2,∴x1-x2<0,x1x2>0,x1x2-1>0,
∴(x1-x2)•$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$<0,即f(x1)-f(x2)<0,得f(x1)<f(x2),
∴f(x)在[1,+∞)上为增函数.
(2)同(1)可证,当0<x1<x2≤1时,
有(x1-x2)•$\frac{{x}_{1}{x}_{2}-1}{{x}_{1}{x}_{2}}$<0,得f(x1)>f(x2),
∴f(x)在(0,1]上为减函数,
∴f(x)在$[{\frac{1}{2},2}]$上有$f{(x)_{max}}=f({\frac{1}{2}})=f(2)=\frac{5}{2}$,
f(x)min=f(1)=2.
点评本题考查函数的单调性的判断和证明,以及运用:求最值,考查定义法的运用,考查运算能力,属于被揭穿他.
未经允许不得转载:答案星辰 » 2023届衡中同卷调研卷广东版四文理 数学