衡水金卷先享题2023调研卷(新教材)(三)文理数学

衡水金卷先享题2023调研卷(新教材)(三)文理数学试卷答案,我们目前收集并整理关于衡水金卷先享题2023调研卷(新教材)(三)文理数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

衡水金卷先享题2023调研卷(新教材)(三)文理数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

20.若函数$f(x)=\frac{1}{3}{x^3}+a{x^2}-bx+4$在点P(2,f(2))处的切线为$y=4x-\frac{10}{3}$.
(1)求函数f(x)的解析式;
(2)讨论方程f(x)=k实数解的个数.

分析求出函数的导数,求出切线的斜率,求出切线方程,求出x,y轴上的截距,运用三角形的面积公式,即可得证.

解答证明:曲线y=$\frac{{a}^{2}}{x}$的导数为y′=-$\frac{{a}^{2}}{{x}^{2}}$,
在任一点(x0,y0)处的切线斜率为-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$,
切点为(x0,$\frac{{a}^{2}}{{x}_{0}}$),
则有切线方程:y-$\frac{{a}^{2}}{{x}_{0}}$=-$\frac{{a}^{2}}{{{x}_{0}}^{2}}$(x-x0),
由x=0得,y=$\frac{2{a}^{2}}{{x}_{0}}$,
再由y=0,得,x=2x0
则与两坐标轴围成的三角形面积是:$\frac{1}{2}$|2x0•$\frac{2{a}^{2}}{{x}_{0}}$|=2a2为定值.

点评本题考查导数的运用:求切线方程,考查直线方程的点斜式,考查运算能力,属于基础题.

试题答案

未经允许不得转载:答案星辰 » 衡水金卷先享题2023调研卷(新教材)(三)文理数学

赞 (0)