2023普通高校招生全国统一考试·模拟信息卷QG(六)6数学

2023普通高校招生全国统一考试·模拟信息卷QG(六)6数学试卷答案,我们目前收集并整理关于2023普通高校招生全国统一考试·模拟信息卷QG(六)6数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023普通高校招生全国统一考试·模拟信息卷QG(六)6数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

5.点P在边长为1的正方形ABCD内运动,则动点P到定点A的距离小于1的概率为$\frac{π}{4}$.

分析(1)数列{an}的前项和为Sn=n(n+2),由此能求出{an}的通项公式.
(2)由Cn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n+1}{{3}^{n}}$,利用错位相减法能求出数列{cn}的前n项和Sn

解答解:(1)∵数列{an}的前n项的“均倒数”为$\frac{1}{n+2}$,
∴根据题意得数列{an}的前项和为:Sn=n(n+2),
当n≥2时,an=Sn-Sn-1=n(n+2)-(n-1)(n-2)=2n+1,
n=1时,a1=S1=3适合上式,
∴an=2n+1.
(2)由(1)得Cn=$\frac{{a}_{n}}{{3}^{n}}$=$\frac{2n+1}{{3}^{n}}$,
∴${S}_{n}=\frac{3}{3}+\frac{5}{{3}^{2}}+\frac{7}{{3}^{3}}+…+$$\frac{2n-1}{{3}^{n-1}}+\frac{2n+1}{{3}^{n}}$,①
3Sn=$\frac{3}{1}+\frac{5}{3}+\frac{7}{{3}^{2}}+…+\frac{2n-1}{{3}^{n-2}}+\frac{2n+1}{{3}^{n-1}}$,②
②-①,得:2Sn=3+$\frac{2}{3}+\frac{2}{{3}^{2}}+…+\frac{2}{{3}^{n-1}}-\frac{2n+1}{{3}^{n}}$
=3+$\frac{\frac{2}{3}(1-\frac{1}{{3}^{n-1}})}{1-\frac{1}{3}}-\frac{2n+1}{{3}^{n}}$
=$4-\frac{2n+4}{{3}^{n}}$,
∴Sn=2-$\frac{n+2}{{3}^{n}}$.

点评本题考查数列的通项公式和前n项和的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.

试题答案

未经允许不得转载:答案星辰 » 2023普通高校招生全国统一考试·模拟信息卷QG(六)6数学

赞 (0)