2023高考名校导航金卷6(六)数学

2023高考名校导航金卷6(六)数学试卷答案,我们目前收集并整理关于2023高考名校导航金卷6(六)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2023高考名校导航金卷6(六)数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有

17.已知M(2,0),N(0,-2),C为MN中点,点P满足CP=$\frac{1}{2}$MN.
(1)求点P构成曲线的方程.;
(2)是否存在过点(0,-1)的直线l与(1)所得曲线交于点A、B,且与x轴交于点Q,使$\overrightarrow{QA}$•$\overrightarrow{QB}$=3,若存在,求出直线l的方程;若不存在,说明理由.

分析(1)由sin2θ+cos2θ=1,能求出曲线C的普通方程,消去参数t,能求出直线l的普通方程.
(2)曲线C是以C(2,0)为圆心,以r=1为半径的圆,先求出圆心C(2,0)到直线l的距离d,由|PQ|=2$\sqrt{{r}^{2}-{d}^{2}}$,能求出结果.

解答解:(1)∵曲线C:$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$,
∴由sin2θ+cos2θ=1,能求出曲线C的普通方程为:(x-2)2+y2=1.
∵直线l:$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$(t为参数).
∴消去参数t,得直线l的普通方程为:2x+y-6=0.
(2)∵曲线C:(x-2)2+y2=1是以C(2,0)为圆心,以r=1为半径的圆,
圆心C(2,0)到直线l:2x+y-6=0的距离d=$\frac{|4-6|}{\sqrt{4+1}}$=$\frac{2\sqrt{5}}{5}$,
又直线1与曲线C交于P,Q两点,
∴|PQ|=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{1-\frac{4}{5}}$=$\frac{2\sqrt{5}}{5}$.

点评本题考查曲线C,直线l的普通方程的求法,考查直线与圆相交弦弦长的求法,是基础题,解题时要认真审题,注意参数方程与普通方程互化公式、圆的性质的合理运用.

未经允许不得转载:答案星辰 » 2023高考名校导航金卷6(六)数学

赞 (0)