楚雄州中小学2022~2023高三上学期期中教育学业质量监测(23-59C)数学试卷答案,我们目前收集并整理关于楚雄州中小学2022~2023高三上学期期中教育学业质量监测(23-59C)数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
楚雄州中小学2022~2023高三上学期期中教育学业质量监测(23-59C)数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有
7.已知函数f(x)=(1+$\sqrt{3}$tanx)•cos2x,
(Ⅰ)当x∈[$\frac{π}{6}$,$\frac{π}{2}$)时,求函数f(x)的取值范围;
(Ⅱ)若在△ABC中,AC=2,BC=2$\sqrt{3}$,f($\frac{A}{2}$)=$\frac{3}{2}$,求△ABC的面积.
分析(1)利用向量的数量积公式,结合二倍角公式,化简函数,再求f(x)的最小正周期;
(2)当x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],即可求f(x)的值域.
解答解:(1)∵$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(cosx-$\sqrt{3}$sinx,2cos(x-$\frac{π}{6}$)),
∴f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$=sinx(cosx-$\sqrt{3}$sinx)+cosx•2cos(x-$\frac{π}{6}$)=2sin(2x+$\frac{π}{3}$),
∴T=$\frac{2π}{2}$=π;
(2)∵x∈[0,$\frac{π}{2}$],
∴2x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],
∴2sin(2x+$\frac{π}{3}$)∈[-$\sqrt{3}$,2],
∴f(x)的值域为[-$\sqrt{3}$,2].
点评此题考查了二倍角的正弦、余弦函数公式,两角和与差的正弦函数公式,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.
未经允许不得转载:答案星辰 » 楚雄州中小学2022~2023高三上学期期中教育学业质量监测(23-59C)数学