安徽省2023-2024九年级上学期阶段性练习(二)文理 数学试卷答案,我们目前收集并整理关于安徽省2023-2024九年级上学期阶段性练习(二)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
安徽省2023-2024九年级上学期阶段性练习(二)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
(2)在弹性限度内将钩码缓慢下拉至某一位置,此时弹簧的长度为L。接通打点计时器电源,从静止释放钩码,弹簧收缩,得到了一条点迹清晰的纸带。钩码加速上升阶段的部分纸带如图乙所示,纸带上相邻两点之间的时间间隔均为T(在误差允许范围内,认为释放钩码的同时打出A点)。从打下A点到打下F点时间内,弹簧的弹性势能减少量为▲
分析(1)直接利用椭圆的定义求得椭圆的方程;
(2)联立直线好椭圆方程,化为关于x的一元二次方程,得到根与系数的关系,由AB为直径的圆过原点O,可得$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,得x1x2+y1y2=0,由此列式求得k的值.
解答解:(1)设P(x,y),由椭圆定义可知,点P的轨迹C是以(0,-$\sqrt{3}$),(0,$\sqrt{3}$)为焦点,长半轴为a=2的椭圆,
它的短半轴b=$\sqrt{4-3}$=1,
故曲线C的方程为x2+$\frac{{y}^{2}}{4}$=1.
(2)直线y=kx+1代入曲线C,消去y并整理得(k2+4)x2+2kx-3=0,
△=(2k)2-4×(k2+4)×(-3)=16(k2+3)>0,
设A(x1,y1),B(x2,y2),
则x1+x2=-$\frac{2k}{{k}^{2}+4}$,x1x2=-$\frac{3}{{k}^{2}+4}$.
由AB为直径的圆过原点O,可得$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,得x1x2+y1y2=0,
而y1y2=(kx1+1)(kx2+1)=k2x1x2+k(x1+x2)+1,
于是x1x2+y1y2=$\frac{-4{k}^{2}+1}{{k}^{2}+4}$=0,得k=±$\frac{1}{2}$.满足题意.
点评本题考查了椭圆轨迹方程的求法,考查了直线与圆锥曲线关系的应用,涉及直线与圆锥曲线的关系问题,常用转化为方程的根与系数关系解题,是压轴题.
未经允许不得转载:答案星辰 » 安徽省2023-2024九年级上学期阶段性练习(二)文理 数学