2024届高考滚动检测卷 新教材(五)文理 数学

2024届高考滚动检测卷 新教材(五)文理 数学试卷答案,我们目前收集并整理关于2024届高考滚动检测卷 新教材(五)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

2024届高考滚动检测卷 新教材(五)文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥PF2,|PF1|=$\frac{4}{3}$,|PF2|=$\frac{14}{3}$.
(1)求椭圆的方程;    
(2)若直线l:y=kx+3与椭圆恒有不同交点A、B,且$\overrightarrow{OA}$•$\overrightarrow{OB}$>1(O为坐标原点),求k的取值范围.

分析设f(x)=x2-an+1•tan(cosx)+(2an+1)•tan1,则f(x)是偶函数,且f(0)=0是其唯一解,从而an+1=2an+1,进而${a}_{n}+1={2}^{n}$,${a}_{n}={2}^{n}-1$,由此bn=nan=n(2n-1)=n•2n-n,利用分组求和法和错位相减法求出${S}_{n}=(n-1)•{2}^{n+1}+2-\frac{n(n+1)}{2}$,由此能求出S9

解答解:∵数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,
∴设f(x)=x2-an+1•tan(cosx)+(2an+1)•tan1,
则f(x)是偶函数,
由题意得f(x)=0有唯一解,
∴f(0)=0是其唯一解,
∴02-an+1•tan1+(2an+1)•tan1=0
an+1=2an+1,
∴an+1+1=2(an+1),a1+1=2,
∴{an+1}是以2为首项,以2为公比的等比数列,
∴${a}_{n}+1={2}^{n}$,${a}_{n}={2}^{n}-1$,
∴bn=nan=n(2n-1)=n•2n-n,
∴Sn=1•2+2•22+3•23+…+n•2n-(1+2+3+…+n)
=1•2+2•22+3•23+…+n•2n-$\frac{n(n+1)}{2}$,①
2Sn=1•22+2•23+3•24+…+n•2n+1-n(n+1),②
①-②,得:-Sn=2+22+23+2n-n•2n+1+$\frac{n(n+1)}{2}$
=$\frac{2(1-{2}^{n})}{1-2}$-n•2n+1+$\frac{n(n+1)}{2}$
=(1-n)•2n+1-2+$\frac{n(n+1)}{2}$,
∴${S}_{n}=(n-1)•{2}^{n+1}+2-\frac{n(n+1)}{2}$.
∴S9=8×210+2-45=8149.
故选:D.

点评本题考查数列的前9项和的求法,是中档题,解题时要认真审题,注意函数性质、构造法、分组求和法和错位相减法的合理运用.

未经允许不得转载:答案星辰 » 2024届高考滚动检测卷 新教材(五)文理 数学

赞 (0)