湖南省2023年上学期高二期末文理 数学试卷答案,我们目前收集并整理关于湖南省2023年上学期高二期末文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
湖南省2023年上学期高二期末文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
8.已知函数f(x)=sin(2x+$\frac{π}{6}$)+4sin2x.
(Ⅰ)求函数f(x)的单调递减区间;
(Ⅱ)设△ABC的内角A,B,C的对边分别为a,b,c.若B为锐角且f(B)=$\frac{7}{2}$,BC边上的中线AD长为2,求△ABC面积的最大值.
分析(Ⅰ)求出BC的中点D的坐标,AD所在直线的斜率,即可求出BC边上中线AD所在直线的方程;
(Ⅱ)求出圆心与半径,即可三角形ABC的外接圆O1的方程.
(Ⅲ)求出公共弦的方程,可得两圆的交点,再求圆心与半径,即可过圆O1与圆O2交点的圆的方程.
解答解:(Ⅰ)设BC的中点为D,由中点坐标公式得:D(2,0),
所以AD所在直线的斜率为k=-3
所以AD所在直线的方程为y-3=-3(x-1),即3x+y-6=0
(Ⅱ)由题知直线AB的斜率不存在,直线BC的斜率为0,
故三角形ABC是角A为直角BC为斜边的直角三角形;
由(Ⅰ)知,线段BC上的中点D(2,0),
所以圆O1的圆心坐标(2,0)半径$r=DA=\sqrt{1+{3^2}}=\sqrt{10}$;
三角形ABC的外接圆的方程为x2+y2-4x-6=0或(x-2)2+y2=10.
(Ⅲ)圆O1与圆O2,两方程相减,可得公共弦的方程为y=x,
与x2+y2-4y-6=0联立,可得两圆的交点分别为A(-1,-1),B(3,3),
线段AB的垂直平分线所在直线的方程为y-1=-(x-1)
与x-y-4=0,可得所求圆的圆心为(3,-1),半径为4
所以所求圆的方程为(x-3)2+(y+1)2=16.
点评本题考查直线方程与圆的方程,考查学生的计算能力,属于中档题.
未经允许不得转载:答案星辰 » 湖南省2023年上学期高二期末文理 数学