华普教育 2023全国名校高考冲刺押题卷(二)2文理 数学试卷答案,我们目前收集并整理关于华普教育 2023全国名校高考冲刺押题卷(二)2文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
华普教育 2023全国名校高考冲刺押题卷(二)2文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
20.已知椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的一焦点F在抛物线y2=4x的准线上,且点M(1,$-\frac{{\sqrt{2}}}{2}$)在椭圆上.
(1)求椭圆E的方程;
(2)过直线x=-2上任意一点P作椭圆E的切线,切点为Q,试问:$\overrightarrow{FP}\;•\;\overrightarrow{FQ}$是否为定值?若是,求出此定值;若不是,请说明理由.
分析首先由平面向量的数量积求出函数解析式,然后利用二次函数求值域.
解答解:因为向量$\overrightarrow{m}$=($\sqrt{3}$x,x2),$\overrightarrow{n}$=($\sqrt{3}$,-$\frac{1}{2}$),当x∈[0,4]时,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$=3x-$\frac{1}{2}$x2=-$\frac{1}{2}$(x-3)2+$\frac{9}{2}$,
属于f(x)的最大值为$\frac{9}{2}$,最小值为0;
所以值域为[0,$\frac{9}{2}$].
故答案为:[0,$\frac{9}{2}$].
点评本题考查了平面向量的数量积的坐标运算以及二次函数求值域;比较基础.
未经允许不得转载:答案星辰 » 华普教育 2023全国名校高考冲刺押题卷(二)2文理 数学