启光教育2023年普通高等学校招生全国统一考试(2023.5)文理 数学

启光教育2023年普通高等学校招生全国统一考试(2023.5)文理 数学试卷答案,我们目前收集并整理关于启光教育2023年普通高等学校招生全国统一考试(2023.5)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

启光教育2023年普通高等学校招生全国统一考试(2023.5)文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

5.已知[x)表示大于x的最小整数,例如[3)=4,[-2,-1)=-1.下列命题中真命题为①③④.(写出所有真命题的序号)
①函数f(x)=[x)-x的值域是(0,1];
②若{an}为等差数列,则[an)也是等差数列;
③函数f(x)=[x)-x是周期函数;
④若x∈(1,4),则方程[x)-x=$\frac{1}{2}$有3个根.

分析(1)首先,命题p为特称命题,其否定为全称命题,直接结合含有一个量词的否定进行处理即可;
(2)先判断所给命题的真假,然后,根据“且”构成的复合命题的真假判断方法进行求解.

解答解:(1)命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立,
∴?q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1<0成立
(2)∵p且q为真,
∴p和q都为真,
∴命题p:?x∈R,|sinx|>a有解为真命题,
则a∈(0,1),①
∵命题q:?x∈[$\frac{\sqrt{2}}{2}$,1],x2+ax-1≥0恒成立,
∴a≥-x+$\frac{1}{x}$,
设f(x)≥-x+$\frac{1}{x}$,
∴f′(x)=-1-$\frac{1}{{x}^{2}}$<0恒成立,
∴f(x)单调递减,
∴f(x)max=f($\frac{\sqrt{2}}{2}$)=$\frac{\sqrt{2}}{2}$
∴a≥$\frac{\sqrt{2}}{2}$,②
由①②,可得a的取值范围为[$\frac{\sqrt{2}}{2}$,1)

点评本题重点考查了简单命题的真假判断,复合命题的真值表应用,注意“且”的含义,理解全称命题和特称命题的否定方式和方法,属于中档题.

未经允许不得转载:答案星辰 » 启光教育2023年普通高等学校招生全国统一考试(2023.5)文理 数学

赞 (0)