黑龙江2022~2023学年度下学期高一期中考试试卷(231663D)文理 数学

黑龙江2022~2023学年度下学期高一期中考试试卷(231663D)文理 数学试卷答案,我们目前收集并整理关于黑龙江2022~2023学年度下学期高一期中考试试卷(231663D)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

试题答案

黑龙江2022~2023学年度下学期高一期中考试试卷(231663D)文理 数学试卷答案

以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)

17.在平面直角坐标系xOy中,已知圆C1:(x+8)2+(y+6)2=25和圆C2:(x-4)2+(y-6)2=25.
(1)若直线1过原点,且被C2截得的弦长为6,求直线l的方程;
(2)是否存在点P满足:过点P的无穷多对互相垂直的直线l1和12,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,若存在求出点P的坐标,若不存在,说明理由.

分析根据当函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调时,则M(t)-m(t)取得最大值,由此求得M(t)-m(t)的最大值;当区间$[t,t+\frac{π}{2}]$关于它的图象的对称轴对称时,M(t)-m(t)取得最小值,从而求得M(t)-m(t)的最小值.

解答解:函数y=sinx在区间$[t,t+\frac{π}{2}]$上的最大值为M(t),最小值为m(t),
区间的长度为$\frac{π}{2}$,正好为函数的周期的$\frac{1}{4}$,
故当函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调时,则M(t)-m(t)取得最大值.
不妨假设函数y=sinx在区间$[t,t+\frac{π}{2}]$上单调递增,
则M(t)-m(t)取得最大值为sin(t+$\frac{π}{2}$)-sint=cost-sint=$\sqrt{2}$cos(t+$\frac{π}{4}$)≤$\sqrt{2}$,
故M(t)-m(t)取得最大值为$\sqrt{2}$.
当区间$[t,t+\frac{π}{2}]$关于它的图象的对称轴对称时,M(t)-m(t)取得最小值,
此时,sin(t+$\frac{π}{4}$)=±1,不妨设sin(t+$\frac{π}{4}$)=1,即t+$\frac{π}{4}$=2kπ+$\frac{π}{2}$,k∈Z,
即t=2kπ+$\frac{π}{4}$,k∈Z,
则M(t)-m(t)取得最小值为sin(t+$\frac{π}{4}$)-sint=1-sin(2kπ+$\frac{π}{4}$)=1-$\frac{\sqrt{2}}{2}$,
故M(t)-m(t)的最小值和最大值分别为1-$\frac{\sqrt{2}}{2}$,$\sqrt{2}$,
故选:D.

点评本题主要考查正弦函数的图象特征,正弦函数的单调性、图象的对称性的应用,属于中档题.

未经允许不得转载:答案星辰 » 黑龙江2022~2023学年度下学期高一期中考试试卷(231663D)文理 数学

赞 (0)