[南充三诊]四川省南充市高2023届高考适应性考试(三诊)文理 数学试卷答案,我们目前收集并整理关于[南充三诊]四川省南充市高2023届高考适应性考试(三诊)文理 数学得系列试题及其答案,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
[南充三诊]四川省南充市高2023届高考适应性考试(三诊)文理 数学试卷答案
以下是该试卷的部分内容或者是答案亦或者啥也没有,更多试题答案请关注微信公众号:趣找答案/直接访问www.qzda.com(趣找答案)
17.已知f(x)=2sin(ωx+φ)(x∈R,ω>0,0<φ<$\frac{π}{2}$)有两个相邻的零点:-$\frac{π}{6}$,$\frac{π}{2}$.
(1)求f(x)的解析式;
(2)若f(α)=$\frac{2\sqrt{2}}{3}$,求cos6α的值.
分析(1)根据定义f(-x)=(-x)lg$\frac{1-x}{1+x}$=(-x)lg[$\frac{1+x}{1-x}$]-1=x•lg$\frac{1+x}{1-x}$,得出f(x)为偶函数;
(2)运用f(x)为偶函数,且在[0,1)递增,在(-1,0]递减,列出不等式组求解.
解答解:(1)∵$\frac{1+x}{1-x}$>0,∴-1<x<1,
即函数f(x)的定义域为(-1,1),
又f(-x)=(-x)lg$\frac{1-x}{1+x}$=(-x)lg[$\frac{1+x}{1-x}$]-1=x•lg$\frac{1+x}{1-x}$,
所以,f(-x)=f(x),
故f(x)为偶函数;
(2)f(x)=xlg$\frac{1+x}{1-x}$为[0,1)上的增函数,
又因为f(x)为偶函数,所以x∈(-1,0]是减函数,
所以,不等式f(x)>f(2x-1)等价为:$\left\{\begin{array}{l}{-1<x<1}\\{-1<2x-1<1}\\{|x|>|2x-1|}\end{array}\right.$,
解得x∈($\frac{1}{3}$,1),
∴原不等式的解集为{x|$\frac{1}{3}$<x<1}.
点评本题主要考查了函数奇偶性的证明,以及应用函数的奇偶性和单调性解不等式,属于中档题.
未经允许不得转载:答案星辰 » [南充三诊]四川省南充市高2023届高考适应性考试(三诊)文理 数学