(新高考)高考数学一轮复习考点练习27《三角恒等变换(1)》(解析)

(新高考)高考数学一轮复*考点练*27《三角恒等变换(1)》(解析),以下展示关于(新高考)高考数学一轮复*考点练*27《三角恒等变换(1)》(解析)的相关内容节选,更多内容请多关注我们

(新高考)高考数学一轮复*考点练*27《三角恒等变换(1)》(解析)

1、考点 27 三角恒等变换(1) 【命题解读】【命题解读】 能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系 .能运用上述公式进行简单的恒等变换 【基础知识回顾基础知识回顾】 知识梳理 1. 两角和与差的余弦、正弦、正切公式 sin()sincoscossin,简记作 S(); cos()coscossinsin,简记作 C(); tan()tantan1tantan,简记作 T() 2. 二倍角公式 sin22sincos; tan22tan1tan2; cos2cos2sin22cos2112sin2 3. 辅助角公式 yasinxb。

2、cosx a2b2sin(x),其中 为辅助角,且其中 cosaa2b2,sinba2b2,tanba. 4. 公式的逆用及有关变形 tantantan()(1tantan); sincos 2sin(4); sincos12sin2; 1sin2(sincos)2; 1sin2(sincos)2; sin21cos22; cos21cos22; tan21cos21cos2(降幂公式); 1cos22sin2;1cos22cos2(升幂公式) 1、知 cos 45,32,则 sin4等于( ) A.210 B.210 C.7 210 D.7 210 【答案】 C 【解析】 ,32,且 cos。

3、 45,sin 35, sin4352245227 210. 2、已知 tan42,则 tan ( ) A.13 B.13 C.43 D.43 【答案】 A 【解析】 tan41tan 1tan 2,解得 tan 13. 3、(多选)已知 f(x)12(1cos 2x)sin2x(xR),则下面结论正确的是( ) Af(x)的最小正周期 T2 Bf(x)是偶函数 Cf(x)的最大值为14 Df(x)的最小正周期 T 【答案】ABC 【解析】因为 f(x)14(1cos 2x)(1cos 2x)14(1cos22x)14sin22x18(1cos 4x),f(x)f(x),T242,f(x)的最。

4、大值为18214.故 D 错 4、 (多选)下列式子的运算结果为 3的是( ) Atan 25 tan 35 3tan 25 tan 35 B2(sin 35 cos 25 cos 35 cos 65 ) C.1tan 151tan 15 D.tan61tan26 【答案】ABC 【解析】 对于 A, tan 25 tan 35 3tan 25 tan 35 tan(25 35 )(1tan 25 tan 35 ) 3tan 25 tan 35 3 3tan 25 tan 35 3tan 25 tan 35 3; 对于 B, 2(sin 35 cos 25 cos 35 cos 65 )2(s。

5、in 35 cos 25 cos 35 sin 25 )2sin 60 3;对于 C,1tan 151tan 15tan 45 tan 151tan 45 tan 15tan 60 3; 对于 D,tan61tan26122tan61tan2612tan332. 综上,式子的运算结果为 3的是 A、B、C. 5、 【2020 江苏南京三校联考】已知,则_ 【答案】 【解析】,sin2x= cos(2x+ )=2sin2(x+= 1=,故答案为: 6、(一题两空)已知 02,且 sin 35,则 tan54_,sin2sin 2cos2cos 2_. 【答案】 :7 3323 【解析】因为 02。

6、,且 sin 35,所以 cos 1sin245,所以 tan sin cos 34, 则 tan54tan4tan 11tan 7. sin2sin 2cos2cos 2sin22sin cos 2cos2sin2tan22tan 2tan29166429163323. 考向一 利用两角和(差)公式运用 例 1、已知 02,且 cos219, sin2 23,求 cos() 【解析】 02,422,42, cos2 1sin22 53, sin21cos224 59, cos2cos22 cos2cos2 sin2sin2 19534 59237 527,cos() 2cos22124957291239729. 变式 1、 (2020 江苏溧阳上学期期中考试)如图,在平面直角坐标系xoy中,以ox轴为始边做两个锐角,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为1010,55,则sin()_ 【答案】22 【解析】由三角函数的定义得:510cos,cos105,所以53 10sin,sin102 5, 所以3 1010sin()sincoscossi52 5255n。

.[db:内容2]。

未经允许不得转载:答案星辰 » (新高考)高考数学一轮复习考点练习27《三角恒等变换(1)》(解析)

赞 (0)